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when Karl von Frisch first began his studies of honey-
bees at the beginning of the last century, it was not clear 
that bees perceived either color or scent. Reflecting upon 
a claim of contemporary researchers that bees were color-
blind, he observed that “once one got to know, through 
work in the field, something about the reaction of bees to 
the brilliant colour of flowers, it was easier to believe that 
a scientist had come to a false conclusion than that Nature 
had made an absurd mistake” (von Frisch 1966). A century 
later, bees’ visual and olfactory processing systems con-
tinue to be the “magic well” von Frisch predicted (Giurfa 
2007), inspiring research programs in behavioral neurosci-
ence, signal evolution, and sensory ecology. Thanks to von 
Frisch’s role as a popularizer of this knowledge (e.g. von 
Frisch 1956), the general public may know more about the 
multisensory worlds of bees than any other animal, from 
the well-known presence of hidden Uv patterns on flow-
ers to the chemical detection capabilities of modern “bomb 
sniffing” bees (Rodacy et al. 2002).

In light of von Frisch’s famous comment, the centennial 
of his work offers an occasion to examine other disconnects 
between how we often study bees and their observed inter-
actions with the natural world. For example, while vision 
and olfaction are the two senses studied most widely in 
bees, they may also be the two senses studied most inde-
pendently from each other. None would argue that a bee 
flying through a flower-filled meadow experiences a world 
of “scentless” colors or “colorless” scents, but most experi-
ments, rather than involving multisensory stimuli, focus 
exclusively on vision or olfaction. Indeed, only about 5 % 
of journal articles on bee learning from the past 20 years 
explicitly consider bees’ responses to multimodal stimuli 
(Leonard et al. 2012). During this period, interest in under-
standing how and why animals respond to multimodal sig-
nals has surged among behavioral biologists (Partan and 
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Marler 1999; Rowe 1999; Hebets and Papaj 2005), gener-
ating a number of recent conference symposia and special 
issues (e.g. Hebets 2011; Partan 2013). Likewise, neuro-
scientists have uncovered intriguing perceptual cross-talk 
between olfaction and vision in humans and Drosophila 
(e.g. Small 2004; Stewart et al. 2010). In each of these 
fields, a historical focus on studying sensory modalities 
independently has led to major gaps in our understand-
ing of the evolution of complex communication (Coleman 
2009) and the workings of the perceptual brain (Alais et al. 
2010; Bremner et al. 2012).

with so many open questions, few other systems can 
compete with bees’ potential as holistic models of mul-
tisensory processing. A century of research on vision 
and olfaction has generated a wealth of neuroanatomical 
insights, experimental protocols, and perceptual models 
(rev. Menzel 1983; Chittka and Raine 2006). Further, in 
contrast to other model systems (e.g. Drosophila), bees are 
uniquely positioned to advance understanding of multisen-
sory integration because the colors and scents relevant in a 
foraging context are the products of coevolution with their 
plant producers. As signals, they face selection not only 
from the physical environment, but also from the sensory 
and nervous systems of receivers (Guilford and Dawkins 
1993). Thus, we have the potential to consider what we 
learn about how bees integrate stimuli in both evolution-
ary and ecological contexts. we can ask how multisensory 
aspects of floral displays have evolved to manipulate bee 
behavior (Raguso 2004; Schaefer et al. 2004; Schaefer and 
Ruxton 2010); likewise, we can ask whether the perceptual 
systems of bees may have evolved to manage complex mul-
timodal floral stimuli. The stage is thus set for innovative 
research into multisensory processing, from both proximate 
and ultimate perspectives.

Here we review what is currently known about how bees 
integrate multimodal floral stimuli. we define multisensory 
integration as “the set of processes by which information 
arriving from the individual sensory modalities (e.g. vision, 

audition, touch) interacts and influences processing in other 
sensory modalities, including how these sensory inputs 
are combined together to yield a unified perceptual experi-
ence of multisensory events” (Talsma et al. 2010). we focus 
nearly exclusively on scent and color although bees cer-
tainly respond to further intra-modal complexity (rev. Dafni 
et al. 1997; Raguso 2008) and integrate stimuli from addi-
tional sensory modalities (e.g. taste and touch or touch and 
smell—areas of particular interest to von Frisch). Our per-
spective is receiver-focused; for a framework of functional 
hypotheses for complex floral displays (i.e. the complimen-
tary “plant’s eye-view”) we direct readers to other recent 
reviews (Leonard et al. 2011a, 2012). Although our focus 
is on bees’ response to floral signals, we draw on findings 
related to multisensory integration in other systems (humans, 
Drosophila, and hawkmoths). This review is not exhaustive; 
rather, we suggest a framework for organizing thinking about 
multisensory integration, with the hope that it may spur 
research at the interface of additional modalities, revealing 
unexplored territory in the bee’s perceptual world.

This framework (Fig. 1) is based on the template of 
another foundational ethologist and von Frisch’s Nobel 
co-recipient, Nikolaas Tinbergen. In his classic paper, Tin-
bergen (1963) suggested organizing the study of behavior 
according to four questions: (1) causation (mechanism), 
(2) ontogeny (development), (3) survival value (function), 
and (4) evolutionary history. This structure allows behav-
ioral biologists to clearly align alternative hypotheses at 
appropriate levels of analysis. while a mechanistic per-
spective on multisensory integration may be most familiar, 
far less is known about how bees actually benefit by using 
multisensory stimuli (function). In the cases of ontogeny 
and evolution, we are at a point of formulating questions 
rather than cataloging answers. Applying Tinbergen’s four 
questions to multisensory integration highlights the inter-
disciplinary potential of this research program, as it brings 
together insights from animal communication, neurosci-
ence, cognitive ecology, and pollination biology.

Fig. 1  Tinbergen’s questions 
applied to the integration of 
floral colors and scents. This 
framework suggests four 
complimentary perspectives on 
understanding how and why 
pollinators use multimodal 
stimuli
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Mechanisms of multisensory integration

To fully consider the mechanisms of multisensory inte-
gration, we would eventually like to map the neural path-
ways involved, understand how olfaction and vision work 
together to control behavior, and then ask how those behav-
ioral processes play out in ecologically relevant foraging 
contexts. A full picture of how bees use both senses in con-
cert will ultimately require insights from neuroethology, 
cognitive psychology, and sensory ecology.

Neural mechanisms

Many questions remain about multimodal integration and 
cross-modal modulation at the neuronal level. The integra-
tion or modulation of multimodal sensory inputs might 
happen at a peripheral level, at the output neurons converg-
ing to final behavior, or at any intermediate point along the 
processing path. In light of these possibilities, it is clear 
that localization of the neuronal mechanism(s) underlying 
multimodal processing is not an easy task. Moreover, it is 
possible that multimodal integration does not always hap-
pen at the same place (erber 1978).

At least in bees, the mushroom bodies (MBs) are widely 
viewed as the major sites of multisensory integration, in 
addition to playing a major role in learning, memory, and 
motor control (Menzel 1999; Heisenberg 2003; Strausfeld 
2012). MBs consist of tightly packed parallel-running bun-
dles of axons that usually bifurcate into two lobes. These 
intrinsic neurons (Kenyon cells—KCs) are organized 
in several subsystems that reflect compartmentalization 
of neuronal inputs of different modalities and/or differ-
ent forms of memories (Strausfeld 2002; Strausfeld et al. 
2009). The dendritic side often forms an elaborate structure 
called a calyx, which allows access to a multitude of input 
neurons. The complexity of the calyx is thought to be cor-
related with the richness of sensory input into MBs (Far-
ris 2013). In hymenopterans, these structures receive input 
from pathways related to the processing of both olfactory 
information (from antennal lobes, AL) and visual infor-
mation (from optic lobes). The lip receives olfactory input 
from ALs, the basal ring receives input from olfactory pro-
jection neurons and from visual neurons from the medulla 
(Gronenberg 1999). The collar ring receives both visual and 
olfactory input as collaterals of the same neurons (Mobbs 
1982; Gronenberg 2001; ehmer and Gronenberg 2002). 
In addition, certain KCs integrate across all the regions of 
MBs calyces, allowing inputs from the olfactory as well 
as from the visual system (Strausfeld 2002). electrophysi-
ological recordings of honeybee MB interneurons support 
their putative role in multisensory integration (erber 1978).

The MBs have been repeatedly shown to be the site of 
olfactory memory formation (Menzel 2001; Gerber et al. 

2004; Davis 2005), but some forms of olfactory memories 
have been also assigned to synaptic changes in the anten-
nal lobes (Yu et al. 2004; Galán et al. 2006). On the con-
trary, studies in Drosophila have shown that visual memory 
traces mediating visual pattern recognition are stored in 
another central neuropile of the fly brain, the fan-shaped 
body (Liu et al. 2006) and visual place learning is localized 
into the ellipsoid body (Ofstad et al. 2011). In flies, simple 
visual, tactile and motor memories are independent of MBs 
and only the visual context associated with memory forma-
tion is MB-dependent (wolf et al. 1998; Liu et al. 1999).

Functional feedback from the MBs to the ALs interneu-
rons and projection neurons has been described in bees as 
well as in flies (Rybak and Menzel 1993; Hu et al. 2010), 
yet from different regions of MBs. This suggests that either 
this feedback is species-specific or, more likely, that there 
are multiple feedbacks from KCs regulating response to 
olfactory stimuli. In bees, calyces receive multiple feed-
back neurons originating in the lobes but there is no simple 
within-modality arrangement. Inhibitory neurons also orig-
inating in KCs are supplied by olfactory projection neurons 
innervating parts of the calyx that receive visual input and 
vice versa (Grünewald 1999). This arrangement supports 
the notion that encoding and processing of one modality 
depends on feedback from the other modality.

Cognitive mechanisms

The question of how bees form associations between 
scents, colors, and rewards involves fundamental questions 
about elemental and non-elemental processes in learning 
(Giurfa 2003, 2007; Balkenius et al. 2008; Young et al. 
2011). During elemental learning, the bee forms an asso-
ciation between a stimulus and a reinforcer (e.g. Scent1/
Color1+, absolute conditioning) or absence of reinforcer 
(e.g. Scent1/Color1+ vs. Scent2/Color2−, differential con-
ditioning); importantly, each component of the rewarded 
stimulus is always unambiguously associated with reward. 
Using an elemental strategy, a bee would be expected to 
learn a color-scent compound as the sum of its parts and 
thus, in principle, to respond to both the color and scent 
presented in isolation. In practice, visual and olfactory 
components of a bimodal compound may hold different 
associative strength for bees. In an early series of experi-
ments, Couvillon and Bitterman (1980, 1982) trained 
free-flying honeybees to associate a sucrose reward with 
a bimodal compound stimulus and then compared their 
responses to a panel of unimodal or bimodal stimuli. They 
found that scent overshadowed color: bees trained to a com-
pound of scent and color later responded less to color alone 
than did bees trained only to color. This finding mirrors an 
earlier result of von Frisch’s (Fig. 2): after keeping a hon-
eybee colony in a box paired with a distinct combination 
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of color and scent, he then replaced it with a box bearing 
either the familiar scent or the familiar color and observed 
which box returning foragers tended to visit. In this experi-
ment, the foragers chose the familiarly scented box over 
the familiarly colored box. Similar types of manipulative 
experiments, albeit with more factorial complexity, have 
been applied to understanding the prioritization of flo-
ral color vs. scent in honeybees (e.g. Gould 1993), bum-
blebees (Odell et al. 1999), and solitary bees (e.g. Burger 
et al. 2010). Likewise, an assessment of the relative roles 
of visual vs. olfactory stimuli have been richly explored in 
relation to perception of pollen rewards (e.g. Dobson and 
Bergström 2000; Lunau 2000).

while this “sensory dissection” approach can help esti-
mate the strength of pollinator-mediated selection on flo-
ral color vs. scent (Klahre et al. 2011), or how particular 
stimuli change in relevance at different spatial scales (Stre-
inzer et al. 2009; Balkenius and Dacke 2010), it does not 
deliver a comprehensive answer to the question of how 
bees use floral scent and color. First, it is difficult to extract 
general principles about bees’ relative reliance on scent vs. 
color from their responses to a particular suite of colors and 
scents, because, as in the case of scent overshadowing color 
noted above, the answer will depend upon the relative sali-
ence of each stimulus chosen by the experimenter (Shettle-
worth 1998; Tang and Guo 2001; Giurfa 2007). Second, a 
complete dissociation of color and scent may mask impor-
tant interactions only observable when both are present in 
concert (Hebets and Papaj 2005; Leonard et al. 2011a).

For example, a number of studies have shown that the 
mere presence of scent can facilitate color learning (Kunze 
and Gumbert 2001; Leonard et al. 2011b). Reciprocally, 
Gerber and Smith (1998) found that color modulates 

olfactory learning in honeybees, even if it is not itself asso-
ciated with reward (see also Balkenius and Kelber 2006; 
Hussaini and Menzel 2013). The ability of scent or color 
to modulate associative learning of the other modality may 
reflect non-elemental processes, because the enhancing 
stimulus is not itself unambiguously associated with the 
reward (Giurfa 2007). This form of non-elemental learn-
ing was elegantly demonstrated in a recent study by Mota 
et al. (2011). The authors used conditioning of the pro-
boscis extension response (PeR) to train harnessed hon-
eybees to associate the presence of a particular scent with 
a sucrose reward. The bees were unable to associate color 
(e.g. blue or Uv light) with sucrose; nonetheless, they were 
able to learn that the scent (1-nonanol) predicted reward 
in the presence of one color (blue) but not another (Uv). 
Thus, even when color does not function as a conditioned 
stimulus, bees may still learn that it provides a context 
for responding appropriately to foraging-related olfactory 
stimuli.

when bees do form elemental associations between a 
reward, scent, and color, these cross-modal relationships 
are linked in memory. For example, Reinhard et al. (2004, 
2006) have shown that scent can trigger recall of associ-
ated visual information. In one experiment (Reinhard et al. 
2004), honeybee foragers gained experience with two feed-
ers, each characterized by a particular combination of color 
and scent. In a test phase, the experimenters released one 
of these training scents inside the colony; in response, for-
agers visited the correctly colored feeder, even though it 
was itself now unscented. while the opposite phenomenon 
(a visual stimulus triggering recall of olfactory informa-
tion) has not, to our knowledge, been demonstrated in bees, 
it has been shown in Drosophila. Guo and Guo (2005) 

Fig. 2  Scheme used by von 
Frisch to assess honeybee forag-
ers’ reliance on color vs. scent 
in colony identification. Bees 
were kept in the central colony 
box characterized by a color–
scent combination (top row) and 
offered a choice between boxes 
with either the familiar scent or 
color (bottom row). Reprinted 
from Karl von Frisch, Bees: 
their vision, chemical senses, 
and language, revised edition. 
Copyright © 1950, 1971, by 
Cornell University. Used by 
permission of the publisher, 
Cornell University Press
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exposed flies to a combination of scent + visual pattern; 
after which flies were conditioned to avoid the pattern. 
Later, they also avoided the scent, which had not itself been 
associated with punishment.

Attention and perception

Multisensory stimuli are broadly thought to influence 
attention via both “bottom up” (stimulus-driven) and “top-
down” (e.g. goal-related) processes. we focus largely 
on stimulus-driven effects, but direct those interested in 
top-down effects to the excellent review by Talsma et al. 
(2010). From a bottom-up perspective, we expect that 
a bimodal stimulus should be more salient to bees than 
a unimodal stimulus (Rowe 1999; van Swinderen and 
Greenspan 2003). Recently, using electroantennogram 
recordings, color-space metrics and behavioral assays, 
Katzenberger et al. (2013) established that the saliency 
of a color–scent compound to bumblebees is greater than 
that of each single stimulus and can usually be predicted 
in an additive fashion from its components. Notably, low-
salience scents and colors in combination had higher sali-
ence than predicted by simple summation, a finding that 
resonates with research on super-additivity at the neuronal 
level in vertebrate systems (Stein and Meredith 1993; Alais 
et al. 2010). Likewise, research on floral constancy sug-
gests that multisensory flowers (i.e. those that differ from 
neighbors in both color and scent) appear to compete for 
a bumblebee’s attention more effectively than unimodal 
flowers (Gegear 2005).

what effect might these processes have on bees’ percep-
tion of flowers? Recent findings from other systems sug-
gest that visual and olfactory perception may operate less 
independently than previously thought. Infamously, wine 
experts described the scent of white wines using red wine 
terminology when experimenters dyed the beverage red 
(Morrot et al. 2001). Subsequently, a growing body of 
research on human perception suggests that visual stimuli 
can indeed affect olfactory perception (de Araujo et al. 
2005), or, “the nose smells what the eyes see”. Subjects 
detect an odor more quickly and identify it more accurately 
if paired with semantically congruent imagery (Gottfried 
and Dolan 2003); further, transcranial magnetic stimula-
tion of the visual cortex improves olfactory discrimina-
tion (Jadauji et al. 2012). Although little is known about 
color’s effect on olfactory perception in invertebrates, cal-
cium imaging of hawkmoths has shown that certain colors 
can either enhance or suppress MB activity in response to 
particular scents (Balkenius et al. 2009). In Drosophila, 
olfactory acuity is enhanced by certain aspects of the visual 
environment (e.g. flies are better able to localize an invisi-
ble odor source in the presence of vertical edges or textured 
background; Frye et al. 2003), giving rise to the argument 

that vision and olfaction are not independent from each 
other in this species as well (Stewart et al. 2010).

Scents can also modulate visual perception, or “the 
eyes see what the nose smells” (Small 2004). In humans, 
there is evidence these effects may be reflexive, “bottom-
up” processes. Using a binocular rivalry paradigm, Zhou 
et al. (2010) showed that when each eye is shown a sepa-
rate image (a rose vs. a marker pen), exposure to the con-
gruent scent (e.g. rose scent) promotes visual dominance 
of the congruent image (rose image over pen image). 
Interestingly, this effect occurs independently of the “top 
down” semantic linkage between visual and olfactory 
stimuli. when subjects were given purified water to sniff, 
but instructed that they were smelling a “rose” scent, the 
matching visual image (of a rose) did not obtain domi-
nance. Bottom-up linkages between particular scents and 
visual images might thus reflexively guide visual percep-
tion, independently of conscious awareness. Likewise, 
humans show bottom-up olfactory enhancement of visual 
search tasks (Chen et al. 2013). In hawkmoths, olfac-
tory stimulation enhances responsiveness to visual stimuli 
(Goyret et al. 2007), and in Drosophila, scents appear to 
affect attention to optic flow cues (Chow et al. 2011). As 
a whole, these findings suggest that by focusing on single 
modalities, we may be underestimating bee performance on 
search tasks, and missing opportunities to understand mul-
tisensory perceptual linkages.

Sensory ecology

How are the mechanisms of multisensory integration 
affected by real-world conditions? Both features of the 
environment (Dyer and Chittka 2004a; Streinzer et al. 
2009; Dyer et al. 2011) and of the plant species itself (e.g. 
Spaethe et al. 2001) will affect the saliency, sequence, and 
degree of overlap between visual and olfactory stimuli rel-
evant to bees. To add to this complexity, we anticipate both 
inter- and intraspecific variation in both olfactory and vis-
ual sensitivity (Spaethe and Chittka 2003; Balkenius et al. 
2006; Spaethe et al. 2007; Burger et al. 2013). Flexibility in 
the timing and ordering of scent and color are thus a basic 
feature of bees’ foraging routines under natural conditions. 
Understanding to what degree this temporal variation mat-
ters for multisensory integration is an important but largely 
unaddressed question (Stein and Meredith 1993; Leonard 
and Hedrick 2010; Uy and Safran 2013). Research in this 
area would be useful for understanding what effect, if any, 
olfactory priming in the colony has upon later use of visual 
and olfactory information. More broadly, bees might be an 
ideal model system for understanding temporal dynamics 
of multisensory processing, given the ease which we can 
manipulate the timing of stimulus presentations and their 
easily accessible nervous systems.
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A second approach towards understanding mechanisms 
of multisensory integration in natural settings is to intro-
duce some degree of perceptual uncertainty to the tasks 
we ask bees to perform (Lynn et al. 2005). Rather than dis-
criminating between single molecule scents, as is common 
experimental practice, bees are more likely to contend with 
scents that are complex blends, subcomponents of which 
may be shared across co-flowering plant species (Raguso 
2008). Likewise, a foraging bee moving through sun and 
shade will have to perform color discrimination tasks under 
light levels that vary in both space and time. Does increas-
ing the perceptual uncertainty associated with stimuli 
in one modality affect the use of stimuli in a second—or 
even third—modality? Given that the difficulty of the dis-
crimination task determines whether bees use elemental 
or configural processing strategies in relation to unimodal 
compounds (Deisig et al. 2002), it may be worth exploring 
whether bees also show different strategies of multisensory 
integration when we give them tasks that approach the dif-
ficulty of discrimination under natural circumstances.

Development of multisensory integration

How multisensory perception develops is a major ques-
tion for experimental biologists (Partan 2013), but to date 
research has been largely limited to vertebrates (Stein 
2012). Older humans, for example, integrate auditory and 
visual stimuli over a longer temporal window (Laurienti 
and Hugenschmidt 2012). Yet there are good reasons to 
expect that invertebrates offer ample opportunities to tackle 
this question. In Drosophila, mechanisms of multisensory 
integration show changes over the course of development. 
while adults exhibit visual modulation of olfactory learn-
ing, and can form olfactory memories that depend upon 
visual stimuli (Guo and Guo 2005), Yarali et al. (2006) 
found that this was not the case for larvae, whose olfactory 
processing appears to be “insulated” against visual modula-
tion. Might we find similar themes in the development of 
multisensory processing in bees, which also may proceed 
through phases marked by dramatically different sensory 
environments? After all, bee MBs show well-established 
patterns of change with both age and experience (Fahr-
bach 2006). In honeybees, MB growth corresponds to 
a shift to foraging outside the colony (Farris et al. 2001), 
and in bumblebees it may be similarly associated with the 
changing sensory environments experienced during early 
adult life (Riveros and Gronenberg 2010). In both groups, 
adult bees spend the first days or weeks of adult life in a 
dark environment dominated by olfactory stimuli. Upon 
foraging, bees enter a multimodal world. what changes 
might occur in how bees use vision and olfaction during 
these developmental transitions? Research on the relative 

importance of visual and olfactory cues used by solitary 
oligolectic bees (e.g. Megachilidae) as they gain foraging 
experience with host plants suggests shifts can occur (Döt-
terl and vereecken 2010; Milet-Pinheiro et al. 2012); how-
ever, most research described in the previous section uses 
experienced foragers as subjects. Given evidence that the 
way in which honeybees learn about unimodal compound 
stimuli changes with experience (Giurfa et al. 2003), what 
changes in multisensory integration might result from age 
and/or foraging experience?

Likewise, how developmental conditions might affect 
later use of color and scent remains an open question 
in bees. For example, after emergence Bombus workers 
spend variable amounts of time in their underground nest 
before experiencing a visually rich foraging environment. 
Recently, Jones et al. (2013) discovered that bumblebee 
workers housed in dark for the first week after emergence 
showed significantly larger volumes of MB calyces than 
bees exposed to visual stimuli during this time. what con-
sequences might these volume differences have for multi-
sensory integration?

The most direct investigation of possible developmental 
changes in multisensory integration comes not from bees, 
but from hawkmoths (e.g. Manduca sexta and Macroglos-
sum stellatarum). Not only have researchers directly com-
pared naïve vs. wild individuals’ use of visual and olfactory 
cues (Raguso and willis 2002, 2005), but using calcium 
imaging, Balkenius and Hansson (2012) have begun to 
chart training-related changes in the activation patterns of 
MBs that seem to be specific to multimodal stimuli. From a 
developmental perspective, Goyret et al. (2009) established 
that larval nutrition (beta carotene availability) can affect 
adult responsiveness to visual vs. olfactory stimuli. Given 
linkages between larval nutrition, body size, and visual vs. 
olfactory sensitivity in many bee species, there is no short-
age of ontogenetic lines of inquiry waiting to be addressed.

Function: does use of multisensory stimuli increase bee 
fitness?

Regardless of how bees use both vision and olfaction when 
foraging, do they benefit from doing so? Most experiments 
assessing the adaptive significance of multimodal stimuli 
use free-flying behavioral assays where an array of artifi-
cial flowers is presented under standard environmental con-
ditions to individual workers from captive colonies. A com-
mon fitness proxy is nectar collection rate (Burns and Dyer 
2008) or one of its determinants—such as accuracy, deci-
sion speed, learning speed, or long-term memory. Although 
colony-level fitness is not usually measured, these simpli-
fied foraging scenarios assume that over the course of many 
foraging trips, even a small boost to nectar collection rate 
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could scale up to affect colony-level reproductive success 
(Pelletier and McNeil 2003).

Detection

A bimodal stimulus may be processed more quickly than 
a unimodal stimulus (Rowland et al. 2007; Balkenius et al. 
2009; Leonard et al. 2012); as noted earlier, it may also be 
easier for bees to locate against a background of sensory 
or environmental “noise”. In humans, multimodal stimuli 
facilitate visual search (van der Burg et al. 2008, 2009), 
and although both honeybees and bumblebees are amena-
ble to similar experimental protocols (Spaethe et al. 2006; 
Morawetz and Spaethe 2012), to what degree multimodal 
stimuli affect their visual search strategies is unknown.

Apart from speed, the benefit of using both scent and 
color to locate flowers may be most apparent in the face 
of changing environmental conditions. For example, Kac-
zorowski et al. (2012) trained bumblebees to discriminate 
between two similarly colored rewarding and unrewarding 
flower types either in the presence or absence of accompa-
nying floral scents. In a test phase where light levels were 
decreased, accuracy declined among bees when flowers 
were unscented, but not among bees whose flowers dif-
fered in both color and scent. Although analogous shifts 
between reliance on different sensory modalities have been 
demonstrated in vertebrates (rev. Smith and evans 2013), 
this appears to be the first evidence that bees can adaptively 
shift reliance on color vs. scent depending on environmen-
tal conditions. whether bees might shift towards using 
visual stimuli in environments where olfactory stimuli are 
“noisy” or degraded by airborne pollutants (McFrederick 
et al. 2009) is an obvious question.

Discrimination

even in the absence of environmental changes, a number 
of recent experiments have shown that bees discriminate 
more accurately between rewarding vs. unrewarding flower 
types when they differ in both visual and olfactory char-
acteristics. Using both scent and color might enhance for-
aging decisions by providing bees with additional sources 
of information (e.g. redundant indicators of floral identity), 
or by perhaps enhancing attention paid to a visual learn-
ing task (Kunze and Gumbert 2001; Leonard et al. 2011a). 
Using a Signal Detection Theory framework, Leonard et al. 
(2011b) showed that when trained in a color discrimination 
task, bees acted as though more certain about the color of 
the rewarding flower type in the presence of floral scent. 
The decrease in uncertainty would likely benefit nectar-for-
aging bees, who are able to maintain a high rate of “correct 
detections” of a more rewarding flower type while avoid-
ing costly “false alarms” (landing on unrewarding, visually 

similar, flowers such as Batesian mimics) (Lynn et al. 
2005). There is even evidence that if flowers do not pro-
vide scents useful in visual discrimination tasks, bees may 
add their own repellant scent marks to unrewarding flower 
types (Giurfa et al. 1994).

Finally, while multimodal floral signals may separately 
affect search speed and decision accuracy, these two com-
ponents of foraging performance are expected to trade off 
against each other (Chittka et al. 2003; Dyer and Chittka 
2004b; Burns and Dyer 2008). Kulahci et al. (2008) com-
pared foraging performance of bumblebees trained on arti-
ficial flowers that were different in reward value and were 
distinguished by shape differences, scent differences, or 
differences of both types. while the sensorial complexity of 
a floral display did not affect the shape of the speed-accu-
racy trade-off itself, bees made more accurate choices for 
a given decision time when flowers differed multimodally.

Evolution: multisensory integration and pollination 
mutualisms

when formulating questions regarding the mechanisms, 
development, and function of multisensory integra-
tion, it is worth remembering that each of these levels of 
analysis itself has an evolutionary history. More specifi-
cally, our understanding of how bees use color and scent 
is grounded in the fact that floral displays have coevolved 
with the sensory and perceptual systems of their pollina-
tors. Although floral signal evolution is a thriving area of 
inquiry (e.g. Schaefer and Ruxton 2010; Leonard et al. 
2012), a “receiver evolution” perspective has received less 
direct attention (with perhaps the notable exception of work 
on color vision; e.g. Chittka and Menzel 1992; Chittka and 
Briscoe 2001). Nonetheless, an evolutionary perspective 
on the relationship between bees and the floral stimuli can 
enhance the study of multisensory integration in several 
ways.

First, we can draw upon a rich body of knowledge to 
ask how multisensory integration of scents and colors in 
bees has evolved in relation to its neural substrate, the MBs 
(Strausfeld 2012). For example, comparative anatomical 
and functional approaches might be used to test hypotheses 
regarding the origin and subsequent fine-scale elaboration 
of MB sensory integration pathways (Strausfeld et al. 1998, 
2009; Farris 2013). One could add a developmental per-
spective into this line of inquiry by comparing the devel-
opment of multisensory integration in MBs across bee taxa 
that vary in relevant life history traits (e.g. social species 
that remain in a dark colony before foraging, vs. solitary 
species that quickly transition to foraging).

Second, we can consider multisensory integration in 
the context of a pollination mutualism, in which we expect 
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to see themes of both cooperation and conflict (Bronstein 
et al. 2006; Leonard et al. 2013). The colors and scents 
chosen by experimenters may be fairly arbitrary, but there 
is growing evidence that many aspects of multisensory flo-
ral displays may have evolved to exploit pre-existing per-
ceptual biases (Schiestl et al. 2010; Schaefer and Ruxton 
2010). we now appreciate that preferences for the colors, 
patterns, and scents commonly found in floral displays in 
many cases may have predated the origins of angiosperms 
(e.g. Biesmeijer et al. 2005; Schiestl 2010). Does the evo-
lutionary history of these stimuli matter for understanding 
their integration? The answer to this question would shed 
light upon themes of constraint and flexibility in the evo-
lution of perceptual systems. One could ask whether our 
understanding of the roles scent and color play changes, 
for example, if we use a scent like geraniol that is also a 
component of pheromones used by bees for intraspecific 
communication. Or, given that plant biosynthetic pathways 
link pigment and scent production (see Katzenberger et al. 
2013), do patterns of multisensory integration change when 
we use particular combinations of scents and colors that 
bees might be more or less “prepared” for?

Future prospects

As presented from the perspectives of mechanism, develop-
ment, function, and evolutionary history, multisensory inte-
gration in bees at this point involves more questions than 
answers. Fortunately, in each case, the tools and techniques 
needed to tackle these questions are within reach, and the 
answers are likely to be of major interest to researchers in 
other systems.

On a methodological note, changes to common learn-
ing protocols have recently been published that may kin-
dle new interest in multisensory research. It is now possi-
ble to efficiently perform PeR conditioning on honeybees 
and bumblebees with intact antennae, to both color and 
scent (Dobrin and Fahrbach 2012; Riveros and Gronen-
berg 2012). More than ever before, it should be straightfor-
ward to use carefully controlled presentations of color and 
scent to tackle questions relating to the temporal synchrony 
of color vs. scent (e.g. Mota et al. 2011). Other develop-
ments are perhaps similarly useful in designing free-flying 
behavioral assays, such as RFID readers and the use of 
real floral pigments as visual stimuli (Katzenberger et al. 
2013). Further, since it is now possible to alter scent or pig-
ment in living flowers by silencing the genes responsible 
for their production (Spitzer et al. 2007) we can test pol-
linator responses to flowers transmitting various suites of 
stimuli in increasingly realistic scenarios (Kessler et al. 
2008, 2013; Klahre et al. 2011; Sheehan et al. 2012). These 
technical advances dovetail with growing interest in multi-
modal stimuli within and beyond our field.

As an example of how a multimodal approach might spur 
new thinking about classic questions, consider the relation-
ship between the sensorial complexity of a flower and floral 
constancy. Constancy has captured the attention of scien-
tists for centuries (rev. Chittka et al. 1999) and is of interest 
from the perspectives of both bee cognition and pollination 
ecology. However, most experiments to understand its driv-
ers involve artificial flowers differing in a single aspect (e.g. 
color), or real flowers differing in multiple, uncharacterized, 
aspects. Gegear’s (2005) finding that constancy increases 
when artificial flowers differ in multiple characteristics 
suggests an ecologically relevant assay for letting the bee 
“tell us” how different her perception of flowers varying in 
colors, scents, or both truly is. This approach could be used 
in experiments to quantify the perceived strength of particu-
lar components of a floral display, within and across modali-
ties, with implications for understanding aspects of bee cog-
nition and floral signal evolution.

we hope these factors will encourage more researchers to 
focus on understanding how and why bees use multisensory 
floral stimuli. Clearly, a century after von Frisch’s pioneering 
studies of the visual and chemical senses of bees, there is no 
shortage of opportunities to continue his legacy by exploring 
the inner workings of their truly multisensory worlds.
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